
Counting Change
Vishal Gupta

Introduction

You’re at the CMS and grab a panini in between lectures. You pay with the
change in your pocket and as you eat it waiting for the next lecture, you wonder:
if I had a lot of coins, how many ways could I have paid for it?

Setting up mathematical notation, say the cost is b and we have coin denomina-
tions a1, . . . , an (in pennies). Then we are looking for the number of solutions
to the equation

a1x1 + · · ·+ anxn = b (1)

This is known as the Diophantine equation of Frobenius, for positive integers
a1, . . . , an, b. Let this number be N(b). We aim to learn as much as we can
about N(b). We suppose that gcd(a1, . . . , an) = 1 - if it was greater than 1,
every b would be a multiple of it so the problem is the same, just scaled up.

Generating function

A useful approach is to consider the generating function f of N :

1 +

∞∑
b=1

N(b)zb =
1

(1− za1) . . . (1− zan)

Then if we can find the zb coefficient of this expression, we’ll solve the problem.

One way to approach this is with a contour integral, viewing it as a Taylor
series centred at z = 0, the xb coefficient can be obtained by differentiating f b
times. Expressing this as a contour integral with Cauchy’s formula for repeated
differentiation we get

N(b) =
f (b)(0)

b!
=

1

2πi

∮
Cr

f(z)

zb+1
dz = Resz=0

(
1

zb+1(1− za1) . . . (1− zan)

)
where Cr is a circle of radius 0 < r < 1 centred at the origin so that it only
contains the pole at z = 0 - the other poles all have modulus 1. This is compli-
cated to calculate using the typical derivative formula, instead, notice that for

1

a circle CR centred at the origin,

lim
R→∞

∣∣∣∣∮
CR

f(z)

zb+1
dz

∣∣∣∣ ≤ lim
R→∞

∣∣∣∣∫ 2π

0

f(Reit)

Rb+1eit(b+1)
Reit(b+1)dt

∣∣∣∣ = lim
R→∞

O(R−(b+a1+···+an)) = 0

Choosing R large enough so that it contains all the poles of f , by the residue the-
orem we know that the contour integral is the sum of the residues, independent
of R. Therefore∮

CR

f(z)

zb+1
dz = 0 =⇒ N(b) = Resz=0

(
f(z)

zb+1

)
= −

∑
z ̸=0

Res

(
f(z)

zb+1

)

(1 − zai) has only simple roots as its derivative has z = 0 as its only root.
Therefore, the residue at z = 1 is of order n so we can calculate

−Resz=1

(
f(z)

zb+1

)
=

1

(n− 1)!
lim
z→1

dn−1

dzn−1

(
(z − 1)n

zb+1(1− za1) . . . (1− zan)

)
=

1

a1 . . . an

(
bn−1

(n− 1)!
+

∑n
k=1 ak

2(n− 2)!
bn−2 +

3 (
∑n

k=1 ak)
2 −

∑n
k=1 a

2
k

24(n− 3)!
bn−3 + . . .

)

The remaining terms are complicated expressions. For small enough n, we could
write out the full formula. However, supposing that b is significantly larger than
ai for each i, we can use this to help us approximate N(b).

The other roots α of f are of order at most n as we pick up at most one factor
of (z − α) for each i. α is a root of both (1− zai) and (1− zaj) only if ai and
aj share a common factor.

For a pole of order m, by considering the powers of b in a calculation analogous
to the above, the residue is of order bm. Since we assumed that there is no
common factor among the ai, the leading order term is the first term in our
z = 1 residue. Therefore

lim
b→∞

N(b)

bn−1
=

1

(n− 1)!a1 . . . an
(2)

This is known as Schur’s theorem.

A notable case is when all the ai are pairwise coprime. Then the poles are z = 1

and zrs = exp
(

2πir
as

)
for r = 1, . . . , as − 1 (dependent on s) and s = 1, . . . , n.

Each zrs is a simple pole. Therefore

−Resz=zrs

(
f(z)

zb+1

)
= lim

z→zrs
(z − zrs)

f(z)

zb+1
= Crs

where |Crs| is independent of b because |zrs| = 1. This means for large b, the
contribution from the poles at z = zrs is negligible.

2

Frobenius Coin Problem

Another interesting question is to think about what numbers b we can’t express
in the form a1x1 + · · ·+ anxn.

For example, if we only have £2 coins and £5 notes, you can’t make £3. We can
make any larger amount; every even number can be made with £2 coins and
for an odd number b greater than 5, b − 5 is even. Therefore £3 is the largest
number we can’t make.

Is this always the case for any collection a1, . . . , an which don’t share a common
factor? The answer is yes, by Schur’s theorem, N(b) > 1 for all sufficiently large
b. Therefore there is a maximal number that cannot be expressed in the form
a1x1 + · · · + anxn, this is known as the Frobenius number g(a1, . . . , an) of the
set {a1, . . . , an}. We require that gcd(a1, . . . , an) = 1 otherwise we could choose
any number b not divisible by the common factor. What can we learn about
g(a1, . . . , an)?

For n = 1, we must have a1 = 1 so every positive integer can be expressed.

For n = 2, write a1 = r, a2 = s - we have gcd(r, s) = 1. By Bézout, any positive
integer can be expressed as p = xr + ys for x, y ∈ Z. This representation can
be made unique by enforcing 0 ≤ x ≤ s − 1 - then the valid representations
are those with y ≥ 0. This gives the largest non-representable number as p =
(s− 1)r − s = rs− r − s when we choose x = s− 1 and y = −1.

We can go further with generating functions. First, we note that r, 2r, . . . , (s−
1)r are in distinct residue classes modulo s. Next, consider the following se-
quences:

S0 = {0 + 0, 0 + s, 0 + 2s, . . .}
S1 = {r + 0, r + s, r + 2s, . . .}
...

Ss−1 = {(s− 1)r + 0, (s− 1)r + s, (s− 1)r + 2s, . . .}

Each sequence is disjoint and we know that their union contains all positive
integers with some exceptions. Let v(x) be a function taking the value 1 if
x ∈ Si for some i and 0 otherwise. Then the generating function of v is

V (x) =
1

1− xs
(1 + xr + · · ·+ x(s−1)r) =

1− xrs

(1− xr)(1− xs)

We’re now looking for the largest power of x which doesn’t appear in the ex-
pansion of V . This isn’t immediately clear from this expression. Instead, since
every coefficient is 1 or 0, we can flip the 1s and 0s by subtracting V from the

3

power series whose coefficients are all 1s, namely h(x) =
1

1− x
:

h(x)− V (x) =
1

1− x
− 1− xrs

(1− xr)(1− xs)
=

(1− xr)(1− xs)− (1− xrs)(1− x)

(1− x)(1− xr)(1− xs)

Because of the existence of the Frobenius number, this expression is a polynomial
and its degree can be read off by considering the largest powers in x on the top
and bottom. This gives us the Frobenius number g(r, s) = rs− r− s as before.

Moreover, we can find the number of numbers which cannot be expressed in the
form rx1 + sx2; this is the number of powers of x in h(x)− V (x) which have a
coefficient of 1. Since every other coefficient is 0, this is just lim

x→1
h(x) − V (x).

To find this, you need to use L’hopital’s rule multiple times - you can work out

the details if you’d like - the answer is
(r − 1)(s− 1)

2
.

Next, we’d move onto n = 3, but there is no known closed formula! Instead,
there is a lower bound p(a1, a2, a3) = g(a1, a2, a3) + a1 + a2 + a3 ≥

√
3a1a2a3

where the constant
√
3 is sharp. There are many results on g(a1, . . . , an) which

can be found in [2]. However, there are special cases that have closed form
answers such as the case of arithmetic and geometric progressions, as found in
[3] and [1].

Sorting Coins

Now imagine we had a lot of coins of different denominations and we wanted to
sort them. It turns out that the Frobenius number is still relevant!

The Shellsort is an algorithm by Donald Shell, published in 1959. It works as
a generalisation of insertion sort. Suppose we have a list of elements a1, . . . , an
which we aim to sort. Choose some sequence of elements h1, . . . , hk, known
as the gap sequence. To describe Shellsort, choose some hi. Then we perform
insertion sort on the sequences a1, a1+hi

, . . . and again on a2, a2+hi
, . . . until

ahi−1, a2hi−1, Once these subsequences are all sorted, the list of elements
is said to be hi sorted, that is, when aj−hi ≤ ai for j = hi + 1, . . . , n. Shellsort
operates by doing this procedure for each h1, . . . , hk. If we h2 sort a h1 sorted
array then it remains h1 sorted. The final list is guaranteed to be sorted if
hk = 1 (so that the final pass is an insertion sort) - if the final pass isn’t hj = 1,
the list isn’t necessarily sorted.

For a very simple example, this can be seen with the sequence 3, 5, 4, 1 and gap
size h = 2. The single pass through will give us the sequence 3, 1, 4, 5 which
isn’t sorted. This makes Shellsort seem like it’s worse than insertion sort as we
have to do an insertion sort anyway! However it is typically better - the intuitive
reason is that in large arrays, the larger gap sizes will take care of the swaps that
need to be made across large distances. This means there is typically less work
to be done when working with the smaller gap sizes, making it generally more

4

efficient than insertion sort. For an example of the algorithm that illustrates
this, we will use it to sort the array [5, 3, 1, 6, 2, 4] with gap sizes 2,1.

Input data 5 3 1 6 2 4
After 2-sorting 1 3 2 4 5 6
After 1-sorting 1 2 3 4 5 6

Table 1: An example run of Shellsort with gaps 2 and 1

In the first pass with gap size 2, we perform insertion sort on the subarrays
[5, 1, 2] and [3, 6, 4], this gives us [1, 2, 5] and [3, 4, 6]. With the final pass of gap
size 1, we only have to make one swap which is far quicker than if we had run
insertion sort in the first place. However, Shellsort isn’t always better, such as
with the list 1, 3, 2, 4, 5.

The time complexity depends on the gap sequence chosen - there are many
choices but the time complexity for many of them remains an open problem.
The relation to the Frobenius number can be seen by noting that any array
which is both h1 and h2 sorted is a1h1 + a2h2 sorted. In fact, the following
result is true (Lemma 8.14 of [2]):

Theorem: The number of steps required to hi sort an array a1, . . . , an which
is already hi+1, hi+2, . . . , ht sorted is

O

(
ng(hi+1, . . . ht)

hi

)
However in general, the Shellsort algorithm is slower than algorithms like merge
sort and quick sort. Its advantage is that it doesn’t require any memory beyond
the original array and is fairly simple to implement. There is also flexibility with
the choice of gap sequences so that the algorithm can be tweaked for specific
scenarios.

Conclusion

Starting with just a problem about change, we’ve managed to cover quite a lot of
different mathematics! There is still yet more mathematics related to this, with
more detailed estimates on the Frobenius number and many problems where
it finds applications. Lots of these are detailed in The Diophantine Frobenius
Problem, a great place to read further.

Bibliography

References
[1] Darren C. Ong and Vadim Ponomarenko. The frobenius number of geometric

sequences. Integers, 8(1):Article A33, 3 p., electronic only–Article A33, 3 p.,

5

electronic only, 2008. URL http://eudml.org/doc/117381.
[2] Jorge L. Ramı́rez Alfonśın. The Diophantine Frobenius Problem. Oxford

University Press, 12 2005.
[3] J. B. Roberts. Note on linear forms. Proceedings of the American Mathe-

matical Society, 7(3):465–469, 1956. ISSN 00029939, 10886826.

6

http://eudml.org/doc/117381

